Простейшая кинетическая модель активации в ТАК
Статьи и работы по химии / Ионные реакции в растворах. Солевой эффект (в ТАК) / Статьи и работы по химии / Ионные реакции в растворах. Солевой эффект (в ТАК) / Простейшая кинетическая модель активации в ТАК Простейшая кинетическая модель активации в ТАК
Страница 1

(6.1)

Первая стадия механизма активации бимолекулярная. Она обратимая, на ней образуется активированный комплекс, а он далее распадается по двум маршрутам: а) обратно в реагенты, с которыми он находится в равновесии, и для этого процесса следует ввести константу равновесия, б) в продукты реакции и этот финальный процесс характеризуется некоторой механической частотой распада. Сочетая эти стадии, несложно рассчитать константу скорости реакции. Удобно рассматривать превращение в газовой фазе.

Константа равновесия обратимой стадии может быть выражена следующим способом.

Если стандартные состояния в газовой фазе выбраны согласно обычному термодинамическому правилу, и стандартизованы парциальные давления газообразных участников реакции, то это означает:

Внимание! Отсюда следует выражение для константы скорости бимолекулярной реакции в ТАК, не вызывающее сомнений в размерности констант скоростей бимолекулярных реакций:

(6.2)

В учебниках чаще всего приводится не столь прозрачное выражение, построенное на иной стандартизации состояний - стандартизуют концентрацию, и в итоге возникает размерность константы скорости, внешне соответствующая моно-, а не би молекулярной реакции. Размерности концентраций оказываются как бы скрыты. У Эйринга, Глесстона и Лейдлера - самих творцов ТАК в книге «Теория абсолютных скоростей реакций» есть анализ, где учтена стандартизация состояний по давлениям. Если стандартным считать состояние с единичными концентрациями реагентов и продуктов, то формулы слегка упростятся, а именно:

Отсюда следует обычно представленное в учебниках выражение для константы скорости согласно ТАК: (6.3)

Если не выделить роль стандартного состояния, то теоретическая константа скорости бимолекулярного превращения может обрести чужую размерность, обратную времени, которая будет отвечать мономолекулярной стадии распада активированного комплекса. Активационные величины S#0 и DH#0 нельзя считать обычными термодинамическими функциями состояния. Они не сопоставимы с обычными характеристиками пробега реакции уже потому, что методов их прямого термохимического измерения просто не существует . По этой причине их можно назвать квазитермодинамическими характеристиками процесса активации.

При образовании частицы активированного комплекса из двух исходных частиц имеет место , и в результате получается

(6.4)

Размерность константы скорости обычная для реакции второго порядка:

Эмпирическая энергия активации по Аррениусу и её сравнение с близкими аналогичными активационными параметрами (энергиями) ТАС и ТАК:

Основа - уравнение Аррениуса в дифференциальной форме:

1) в ТАС получаем:

2.1) ТАК. Случай 1. (Общий подход при условии стандартизации концентраций)

подстановка в уравнение Аррениуса даёт

2.2) ТАК. Случай 2. (Частный случай бимолекулярной стадии активации

)

Энергия активации по Аррениусу для бимолекулярной реакции:

Внимание!!! Полагаем чаще всего

2.2) Исходя из стандартизации давления, получаем энергию активации:

(6.7)

2.3) Это же получается для бимолекулярной реакции и при стандартизации концентрации:

(6.8)

Страницы: 1 2

Смотрите также

Пластические массы и синтетические смолы
Пластические массы и синтетические смолы исключительно важны практически для всех отраслей народного хозяйства. В настоящее время ускорение научно-технического прогресса в области науки и т ...

Значение химии в создании новых материалов, красителей и волокон
...

Олигосахариды и полисахариды
...