Основные результаты работы

Впервые измерены токи эмиссии из твердых электролитов Na20.11Al203 и Na5Gd0,9Zr0,iSi4O2 и контактная разность потенциалов между натрием и твердыми электролитами типа Na5MSi402, где M=Y, Eu, Gd, Yb в интервале температур от 230 до 400°С. Работа выхода иона Na+ из твердого электролита меньше, чем из чистого металла.

Впервые исследованы процессы ионной инжекции ионов серебра и меди в твердофазных системах с использованием твердых электролитов. Показано, что токи обмена границы с интеркалатным электродом более чем на порядок превышают токи обмена с металлическим электродом.

Методом квантово-химического моделирования показана возможность миграции однозарядных катионов по поверхности рутилоподобных оксидов. Показано, что барьеры на пути миграции минимальны для катионов Na+. Установлена возможность перехода поверхностной миграции протона в объемную. Показано, что для Sn02 преобладает поверхностная миграция протона, а для Pb02 - объемная.

Экспериментально обнаружено возникновение протонной проводимости на поверхности диоксида олова. Показано, что величина протонной проводимости определяется количеством адсорбированной воды и температурой, Установлены условия, при которых ионная составляющая проводимости Sn02 превышает 95% от общей проводимости.

Изучена проводимость распределенных структур CsHS04 - Sn02. Показано, что проводимость распределенных структур имеет смешанный протонно-электронный характер. Величина проводимости имеет немонотонный характер. Максимум протонной и электронной составляющих проводимости наблюдается в смеси, содержащей 50% SnC по объему.

Изучено поведение границы РЬ02 с солями фосфорвольфрамовой кислоты (ФВК). Установлено, что эта граница имеет достаточно высокие токи обмена, связанные с внедрением протонов в кристаллическую решетку РЬ02, и абсолютно не чувствительна по отношению к изменению состава газовой среды.

Показано, что эквивалентная схема импеданса электрохимической ячейки Sn02/Na+-T3/ Sn02 содержит две цепочки, одна из которых соответствует переносу Na+ в объеме зерна и через контакт соседних зерен, а вторая - переносу Na+ по гидратированным границам зерен. Электрохимическая активность границы Sn02/Na+-T3JI по отношению к С02 определяется гидратируемостью поверхности ТЭЛ и электродного материала.

На основании изучения закономерностей ионного переноса между ионпроводящей и полупроводниковой фазами получены электрохимические системы, способные селективно изменять свою ЭДС при изменении концентраций Н2, СО и С02 в газовой фазе.

Смотрите также

Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах
...

Роданид калия в спектрофотометрии
...

Получение алкилсиланов взаимодействием металлоорганических соединений с алкилхлорсиланами
Технический прогресс в значительной степени зависит от использования новых материалов и технологий. Поэтому в последнее время в промышленно развитых странах стали уделять все больше внимани ...