Периодический закон и его обоснование.
Статьи и работы по химии / Жизнь и деятельность Д.И. Менделеева / Статьи и работы по химии / Жизнь и деятельность Д.И. Менделеева / Периодический закон и его обоснование. Периодический закон и его обоснование.

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной.

Особо четко она проявляется в структурировании научного и учебного материала химии.

Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии Менделеев заподозрил ошибку в исследованиях свойств бериллия, он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов).

Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Прогностическая(предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32.

Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Он все предсказания делал на основе им же самим открытого всеобщего закона природы.

Всего же Менделеевым были предсказаны двенадцать элементов.С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках.

Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы.

Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленной от этой группы (например, с общей формулой типа АзВ).

Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г.

Мозли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл.

Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы.

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов.

Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертны.

Смотрите также

Общие свойства молекулярных орбиталей
Общие свойства МО хюккелевских УВ: Альтернантность. Теорема парности. Свойства корней векового детерминанта. Матрица коэффициентов (составы МО). Свойства коэффициентов. П ...

Качественный анализ неизвестного вещества
Аналитическая химия имеет огромное практическое значение в жизни современного общества, поскольку создает средства для химического анализа и обеспечивает его осуществление. Химический ан ...

Йод
ИОД (лат. Iodium), I - химический элемент VII группы периодической системы Менделе­ева, относится к галогенам (в литературе встречается также символ J); атомный номер 53, атомная масса 126, ...