Электронно-лучевой испаритель

Из-за большой химической активности кремния и германия, для получения пленок с минимальным количеством ненужных примесей встает необходимость использования "автотигей" (расплав испаряемого вещества не контактирует с другими материалами) для получения чистых атомных пучков этих материалов. Использование электронно-лучевого испарителя решает эту проблему. цепи противоскольжения для грузовой техники

Основные части ЭЛИ включают в себя катод, фокусирующий электрод, ускоряющий электрод и мишень - испаряемый материал (см. рис.6). Поворот и фокусировка электронного пучка в центр мишени производится постоянным магнитным полем самарий-кобальтовых магнитов, укрепленных под корпусом испарителя. Кристаллическая мишень (кремниевая или германиевая) размещена в тигле с водоохлаждаемым корпусом. Поток электронов разогревает центральную часть кристалла до плавления.

Рисунок 6. 1 – Корпус; 2 – Фокусирующий электрод; 3 – Катод; 4 – Изолятор; 5 – Основание катодного узла; 6 –Магниты; 7 – Тигель; 8 – Трубка охлаждения.

Применение магнитного поля для фокусировки электронного пучка позволяет сделать катодный узел невидимым из места расположения подложек. Тем самым устраняется опасность прямого попадания продуктов ионного распыления на подложку и эпитаксиальную пленку.

Скорость осаждения можно изменять меняя величину "озера" расплавленного материала, т.е. управляя мощностью электронной бомбардировки. Для предотвращения загрязнения испаряемого материала это "озеро" не должно выходить за границу кристалла, т.е. сам кристалл является тиглем и, таким образом, реализуется режим "автотигля". Управление мощностью осуществляется изменением тока эмиссии при неизменном ускоряющем напряжении.

При длительной работе ЭЛИ в центре материала, загруженного в тигель, образуется кратер, что может привести к уменьшению скорости испарения и изменению углового распределения потока испаряемого материала. Это приводит к увеличению неравномерности толщины пленки по радиусу подложки. Для выравнивания профиля загруженного материала место расплава временно смещают в разные стороны от центра тигля, оплавляя края кратера и таким образом перемещая испаряемый материал к центру тигля. Смещение места расплава производят изменением ускоряющего напряжения и внешними магнитами, размещенными на стенке вакуумной камеры.

Смотрите также

Увеличение степени защиты стали от коррозии в нейтральных и кислых средах
Работа посвящена проблеме увеличения степени защиты стали от коррозии в нейтральных и кислых средах, при использовании фосфорсодержащих ингибиторов, а также совершенствованию дискретных мет ...

Технология получения и свойства мочевино-формальдегидных смол
Первые продукты конденсации мочевины с формальдегидом (карбамидные смолы) были получены еще в 1896 г., но производство мочевино-альдегидных смол налажено лишь в 1920—1921 гг. Мочевино-фо ...

Фтор
ФТОР (лат. Fluorum), F - химический элемент VII группы периодической си­стемы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормаль­ных условиях (0 °С; 0,1 ...